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Conic Sections

Introduction:

A conic section is a curve formed by the intersection of a plane with a
right circular cone. A conic section can be generated by a point that moves L
that the ratio of its distance from a fixed point (called a focus) to its distance
from a fixed line (called a directrix) is constant. In this way conics are defined
by their eccentricity‘(e). (If e = 1, the conic is a parabola; for e < 1, it is an
ellipse; and for e > 1, it is a hyperbola.)

Conics can also be generated algebraically by second-degree equations
in two variables. Each equation of the form Ax2 + Bxy + Cy2 + Dx + Ey+F=

0, where not all of A, B, and C are zero, generates a conic or a degenerate conic.

Using the determinate B 4AC the type of conic can be determined.1

Fig. 1. The intersections of
various planes and a right
circular cone. (The Joy of
Mathematics, 197)

parabola



An ellipse is a curve formed by a plane that intersects the axis of a
circular cone and is not parallel to an element of the cone. An ellipse may also
be defined as the locus or set of points for which the sum of the distances to
two fixed points is constant. Each fixed point is called a focus. Oblique cross

sections of right circular cylinders are ellipses. The focal property of an ellipse

gives it special optical and acoustical properties. A light beam or sound beam =~

emanating from one focal point in any direction will always pass through the
other focus after being reflected from the ellipse. A circle is a special type of
ellipse.2

An ellipsoid is a closed central surface that can be represented on
three-dimensional, x-y-z-coordinate axes by an equation of the general form
x2/a2 +y2/b2 + 22/c2 = 1. When the constants a, b, and c are such thata > b >
¢ > 0, the major axis (of length 2a) is along the x-axis, the mean axis (of length
2b) is along the y-axis, the minor axis (of length 2c) is along the z-axis, and the
center is at the origin. If a = b = ¢, the ellipsoid is a sphere. If two of the
constants are equal, the surface is a spheroid, or ellipsoid of revolution.
Rotating the ellipse x2/a2 = z2/c2 = 1 about its major axis produces a prolate
spheroid; rotating the same ellipse about its minor axis produces an oblate
spheroid.3

A hyperbola is formed by a plane that intersects a right circular conical
surface and is parallel to the axis of the surface. A hyperbola is the set of

points with a constant difference of the distances.



A one-sheeted hyperboloid of rotation, obtained by rotating the two
branches of a hyperbola about its conjugate axis, is a connected surface. A
two-sheeted hyperboloid of revolution, obtained by revolving the two branches
of a hyperbola about its transverse axis, consists of two equal parts situated
symmetrically on either side of a plane of symmetry.4

A parabola is formed by a plane that intersects a right circular cone
and is parallel to one of its elements. A parabola may also be defined as the
set of all points that are equidistant from a fixed point (the focus) and a fixed
line (the directix). By using this definition, a parabola may be constructed by
ruler and compass. The parabola has a very special geometric property that
makes it useful as a reflector of light and sound. Light rays passing through
the focus and being reflected from the parabola will emerge in a direction
parallel to the axis of the parabola; conversely, rays approaching the
parabola parallel to the axis will be reflected so that they pass through the
focus.

When a parabola is rotated about its axis, it generates a surface called

a paraboloid of revolution.b

History:
Apollonius of Perga, a Greek mathematician of the 3rd and early 2nd

centuries BC, was known as the Great Geometer. In On Conic Sections, he



introduced the terms ellipse, hyperbola, and parabola. He was also an
important founder of Greek mathematical astronomy.6

The invention of analytic geometry is generally credited to the French
philosopher and mathematician Rene Descartes (1595-1650).7 Gerard
Desargues (1591-1661) was a French mathematician whose work centered on

SR

the theories of conic sections, perspective, and projective geometry. 8

Who- iy Dandelin?

Germinal Pierre Dandelin was born in 1794 and died in 1847. In 1822
he proved that there always exist spheres in the cone such that they are
tangent to both the conic and the cone.9 These spheres are known as
Dandelin spheres. Dandelin was a Belgian mathematician and geometer, as
well as a professor of mechanics at Liege University.10 Now that you are
hopefully interested enough to learn about Dandelin spheres, read on. (And

even if you aren’t interested, still read on.)



What are Dandeliv Spheves?

Luckily for me, I was able to get a photocopy of a chapter of Lyle E.
Mehienbacher's Foundations of Modern Mathematics which defines conics in

terms of Dandelin spheres. Refer to the figures as you read this section

(otherwise it will be a miracle if you can understand what I wrote). Also ™

included at the end of this section are two demonstrations that John Conway
e-mailed to a friend of a friend.

A Dandelin sphere is a sphere inside the cone so that it is tangent to
the cone at the points of a circle. If a plane intersects the cone perpendicular
to the axis, forming another circle, then there are two Dandelin spheres in the
cone that are also tangent to the plane containing the circle at the center of
the circle {(one on top, the other on the bottom). Similarly, if you have an
ellipse or hyperbola formed by the intersection of a plane and the cone, there
will be a spheres tangent to the plane containing the conic at each of the
conic's foci. A parabola is slightly different, having only one Dandelin sphere.
A Dandelin sphere is tangent to the plane containing the parabola at its
focus. Directrices of conics can also be found using Dandelin spheres. The
directrices are the lines in which the cutting plane meets the planes of the

circles in which the spheres touch the cone.



Ow Conicy and Spherey

Let's first consider the case of the Dandelin spheres in a cone
containing a circle as mentioned above. There are two spheres (call them D
and E) tangent to the cone and to the circle at its center. Let P be a point on
circle C and VP (V is the vertex of the cone) is on the cone and contains P, then
VP is tangent to the Dandelin sphere D at the point B, and VP is tangent t:;%_
the Dandelin sphere E at point A. PO is tangent to each sphere at O (got all of
that?), 20 PO=PB =PA. (A and B are on circles G and H.) Sphere D is

tangent to the cone at every point on the circle with center G, and sphere E is

tangent to the cone at every point on the circle with center H.

Both circles G an H are on planes that are
perpendicular to the axis of the cone (and
therefore parallel to the cone's base). Replacing _.,;'_5‘ Axis

the slicing plane with the cartesian plane allows

Dandelin
us to look at all of the conics analytically. sphere

Proofs to find the algebraic definitions of Circle C

_____

conics are based on this principle. (In
Dandelin

other words, conics are often defined in  PMe™ / of cone

terms of Dandelin spheres as opposed to

defining Dandelin spheres in terms of

conics.) i

Fig. 2. A circle and its Dandelin
spheres. (Foundations of Modern
Mathematics, 120)



Now let's consider a more general case, the ellipse. When a cone is
sliced by a plane, not through V, and so that the intersecting conic lies in only
one half of the cone, the conic is an ellipse. One of the spheres is tangent to
the cone in circle U and to the slicing plane at the point F1 (plane through the
first focus), the other sphere is tangent to the cone in circle W and to the plane
through other focus, F2. We pick a point P on the ellipse lying on VP, VP ;;m_
tangent to the Dandelin sphere S at A, where it touches circle U. It is tangent
to sphere T at B where it touches circle W, The plane containing circle U is
parailel to the plane with circle W. PF1 + PF2 = PA + PB = AP + PB = AP,
The length of AB is constant regardiess on which point P on the ellipse. Lines
d1 and d2 in the picture are the intersection of the slicing plane and the plane

of circle U and the intersection of the slicing plane and the plane with circle

W respectively. They are the directrices of the ellipse.

Slicing plane

Dandelin

Ellipse

Fig. 3. An ellipse and its Dandelin spheres.
{Foundations of Modern Mathematics, 126)

Dandelin
sphere




Hyperbolas are very closely
related to ellipses, so there are
many similarities between
Dandelin spheres in a cone with an
ellipse and one with a hyperbola.
In a hyperbola, one of the Dandelin
spheres is in the upper half of the
cone (sphere S). It is tangent to the
cone in the circle with center U and
to the slicing plane at F1. The
second sphere (sphere T) lies in the
lower half of the cone and is
tangent to the cone in the circle
with center W and to plane at Fo.
Select a point P on one branch of
the hyperbola. VP is tangent to

sphere S at point A and to sphere T

at point B.

Dandelin __+ .

Dandelin

One branch
of the hyperbola

sphere

sphere

One branch
of the hyperbola

Fig. 4. A hyperbola and its Dandelin
spheres. (Foundations of Modern
Mathematics, 129)

Since P is on the slicing plane, PF'] is tangent to S at F'1, and PF9 is tangent

to T at F2. Again, the planes with circles U and W are parallel. PF{ = PA,

PFo =PB, PB - PA=PF9 - PF1 = AB. Again, d1 and d2 are the directrices.



Slicing

Fig. 5. A parabola and its Dandelin
spheres. (Foundations of Modern
Mathematics, 129)

Dandelin
sphere

M

T

Parabola

When the plane that slices a
cone is parallel to the cone, then the
conic section formed is a parabola.
Unlike the other three conics discussed, the parabola has only one conic
gection tangent to it because its geometric definition involves a directrix
instead of a second focus. D, our hero the Dandelin sphere, is tangent to the
cone in circle S and tangent to the slicing plane at F. Again, we pick a point P
on VP énd the parabola. PF is tangent to D at F, and PV is tangent to D at C,
so PF = PC. LM is the intersection of the slicing plane and the plane with
circle S, so LM is the directrix of parabola. Also unlike the Dandelin
definitions of the other three conics, the definition of the parabola is obtained
by constructing perpendicular planes to the sphere and then using ideas of
triangle congruence. (In the picture, PA is perpendicular to LM at point A. PG
is perpendicular to the plane containing circle S. The triangle PGC has a right
angle at G as does triangle PGA.) Because the slicing plane is parallel to the

edge of the cone, we can conclude that PA=PC = PF.11



Here are two Dandelin sphere demonstrations that I received from an

on-line correspondent who was given them by John Conway.12

Fig. 6. Dandelin demonstration of an ellipse.

Cu the bettom half of the
cong with a plhe.

Put in two spheres:

The first touching the

plne at a point from

above (at Eoint A)and

touching the cone abong a

circke. _

the 2nd touching the

Sphere from below (at

point B) and the cone
bng a crcle.

Take a point lying on the
intersection of the cone
‘with the plane, call it P

DP and BPare both
tahgent lines [o the ¢icle
andthey intersect so
theyre equal. Forthe
same reason CRand AP
are equal to each other,
Therefore
BA+AP=CP+PD, and CPD
is of constart length no
malter where P is.

This is the dandelin
demonsiration for the
ellipse. The spheres are
LJandedin spheres, |
beilieve.




The plane cuts both the top
& bottom halves of the
cone. Place a sphere in the
top half that touches the
cone ajonga circle and the
plane at point A, Ditto for

A the bottom half touching the
plane at point B.

in this case PD=PB
because they're both
tangents of the same
sphere meeting at P

PC=PA forthe same
reason.

PA-PB=PC-PD

PC-PD=CD whichis
constant.

The same argument can be
applied to points onthe top
half.

Fig. 7. Dandelin demonstration of a hypgrbola.



Here comes the conic relief. Well, almost. It's still about conics, but it's

more relieving, or at least:

Interesting.... I think

As1was searching, reading various books and spending time on-line, T __
came across some of what I consider to be the most fun of this project -- the
little tidbits (that relate to absolutely nothing). Here are a handful of facts

(don't expect any of these topics to come up at your dinner table, unless you

eat dinner with very, very strange people).

Uses of Conics and Conicoids:

One of the most interesting things I found (the main rival for topic
choices) was uses of conics and conicoids. Parabolas have the property that
all rays coming in will be reflected and pass through the focus.

i i Parabolic mirrors are used in
lmn nlll”llmm | “ {

""; headlights, searchlights, antennas,

“l N radar, and telescopes. Paraboloids are

il Iumw m m “l g 2% used in speakers.13  Reflectors

muuml“ il

Fig. 8. Parabolasmhea ghts.

(The Magic of Mathematics, 13) behind headlights are paraboloids.

A beam is created at the focus so light travels out parallel to the axis of

symmetry. Dimming the light changes the focus so most of the light is



blocked.14 Sounding off -- St. Peter's Cathedral in Rome and the Greek
amphitheater at Epidaurus use parabolic reflectors for acoustics.15 (Sounds
like a good idea to me.)

Parabolas are also used to approach irrational numbers to solve

functions,16

- system was developed using U.S. long range navigation, or loran.17 Loran
uses the property that all sounds at one focus will pass through the other
focus. The navigator notes the time of arrival of the various signals and can
pinpoint the aircraft's position as the intersection of two hyperbolic curves, or
loran lines.18 Flood lights are also hyperbolic. Hyperbolic mirrors make
objects look as if they have been reflected from the other focus.19

Ellipses are used in engineering, in arches of bridges, and gears for
machinery (punch presses).20  Ellipsoids are used in computers to view
higher dimensions (very much higher, like 17 dimensional hYPersptatce).21

The elliptic curve y*2=x*8+ax+b is used in an algorithm for factoring
very large numbers.22 Ellipses are also used efficiently in bicycle gears.23
Machines shaped like ellipsoids are used in medicine to pulverize kidney
stones without surgery. The machine is placed against the body so that one
focus is inside the machine and the other is inside the body at the site of the
stone. Because of the property that ellipses will reflect anything from one

focus to the other, sound waves that are emitted bounce off of the inside of the

Hyperbolas are used in navigation. During World War IT a hYPerbolicm



ellipsoid and collect at the stone to pulverize it.24 And another use of ellipses

(although not as scientific) -- ever play pool on an elliptical table?25
o if this ball is hit through the

e

with an X, ﬂm.‘lbounceoif
the cushion and go to the
All four conic sections were found by Kepler in the paths of planets.

qrhar focus where the pocket

Fig. 9 An elliptipool table. (The
Magic of Mathematics, 18)

Conics in Nature:

Galileo discovered the relationships that a parabola has to trajectiles. An arc
of spouting water and the shape of flashlight on a flat surface are both
examples of a parabola. Any rotating liquid in a circular bowl will trace out a
parabolic shape. Ellipses and hyperbolas are found in the orbits of comets
and planets. Circles are at work whenever we see ripples on a pond, the
wheel, or some orbits. Several laws of nature involve hyperbolic curves. Many
comet trajectories and paths of particles in atomic-scattering experiments are

hyperbolas.26
Conics in Buildings:
St. Mary's Cathedral in San Francisco,

built and designed by Paul Ryan, John Lee,

Pier Luigi Nervi, and Pietro Bellaschi, is a

2135 cubic foot hyperbolic paraboloid cupola Fig. 10. A hyperbolic paraboloid like

that at St. Mary's Cathedral. (The
with walls 200 feet off the ground and  Joy of Mathematics, 171)



weighing about 36 million pounds. The equation of such a hyperbolic
paraboloid is y*2/b*2-x*2/a*2=z/c*2 where a and c are greater than 0, and ¢
is not equal to 0.27

The ceiling of the Capitol is a parabolic ceiling (designed in 1792 by
Thornton). John Quincy Adams, while still in the House of Representatives,
used the following property of a parabola to listen in on other M:M
Representatives. Sound bounces off the reflector of the dome, parallel {o the
opposite reflector and then bounces to its focal point. In this way Adams was
able to listen to people across the room who were standing at the focus.
Noises coming from elsewhere will not affect the clarity of reflected sound in a

parabolic room. Tour guides at the Capitol Building demonstrate this

property for visitors.28

Fig. 11. Parabolic reflectors at the Capitol. (The Joy of Mathematics, 23)

Going ballistic:

Galileo found that the path of a cannonball rolled off the end of a plank
was the descending branch of a parabola. The trajectory of a projectile fired in
a vacuum from an inclined gun barrel would include both the ascending and

the descending branches of a parabola.29



Beyond a shadow of doubt:
No matter where the light source, the shadow of an ellipsoid is always
an ellipse. (This is because the intersection of any ellipsoid and a plane is

always an ellipse.)30

That's a moiré:

On the next page are two moiré patterns -- the intersections of two
-‘families of circles where each family shares a center and the radii .&:re
integers. The intersections lie on hyperbolas and ellipses. When the distance
between the families' centers is infinity you have a family of circles and a

family of parallel lines - This makes parabolas. When the distance is zero you

get circles.31

What does it mean:

Not only can you define conics in terms of slices of a cone, quadratic
equations, by geometric definitions, and using eccentricity, but you can also
define them by using geometric mean. (If 22 = xy then z is the geometric mean
between x,y.) If x,y,z are homogeneous coordinates in the plane than that

equation can be used to define any non-degenerate conic.32



Fig. 12, Moiré patterns form an ellipse and a hyperbola.




Completely hyper:

Here's a picture of a complete monster.33

Fig. 13. The monster, an orthogonal surface of
confocal conics. (Say that three times quickly.)
(The Penguin Dictionary of Curious and
Interesting Geomnetry,  166)

And in case anyone ever asks, quadratic surfaces in n-dimensional space are
described by x.(Ax) + b.x + ¢ = 0 where x = position vector, A = symmetric
tensor (basgically a symmetric matrix), b = constant vector, and ¢ = constant
scalar. A.x is the vector obtained by multiplying tensor (matrix) A by vector x

and u.v is the scalar product of vectors u and v.34

Oy gevalt:

(Warning -- reading this paragraph may prove harmful to your health.)
We can also relate the shape of the conic to the eigenvalues and eigenvectors
of the matrix A. (In case you're not all that familiar with eigenvalues and
vectors, here's a brief definition: eigenvalues A so AX=AX, scalar A where there
are nonzero solutions if A is an N*N matrix and there is some vector X. AX is

the eigenvector.35)



1) A=0 --> Line (in most cases)

2) A = nonzero scalar*(identity matrix) --> Circle (if a curve exists)

3) Eigenvalues of A are unequal but have the same sign --> Ellipse
(again if the curve exists). If the eigenvalues are equal, then for a
symmetric matrix we must have a scalar times the identity matrix,
and the case reverts to 1) or 2).

4) One eigenvalue is zero, the other nonzero -->Parabola, 2 pairallel
lines, one line, or no curve. The parabola is the usual case; the
others occur only for special cases. Note that the parallel lines are a
cylindrical section; a cylinder is one limiting case of the cone.

5) Eigenvalues have opposite signs --> Hyperbola or 2 intersecting

lines.36

Equations and graphs:

In addition to being graphed by quadratic equations, conics can be
expressed as (p*2 + q*2)[(x-a)*2 + (y-b)*2] = e*2(px + qy + r)*2 where e is the
eccentricity, (a, b) the focus, and px+ qy + r is the equation of the directrix of
the conic. In vertex form -- y*2=2px - (1- e*2)x*2.37

The parametric equation of an ellipse is x=a cos 8 y=Db gin 8. The foci
are located at ( £ ae, 0) and ae = square root ( a*2 - b2).38 The parametric
equation of a hyperbolaisx=asecd ,y=Dbtan 6.39 The parametric equation

of a parabola is x = at*2, y = 2.40

R e
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F = (p, 0)
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Fig. 14. (Foundations of Modern Math, 124)

The equation. of an ellipsoid (in plain old everyday space) is x*2 /a*2 +
yA2bA2 + zA2/c*2 = 141 The equation of a hyperboloid of one sheet is x*2
fa*2+y*2/br2 - zA2/c*2 =1, and of two sheets x*2 /a*2 - y*2/H*2 - 242/cP2 =
1.42 Elliptical and hyperbolic paraboloids are found by the equation x*2/a*2

+yr2/hA2 = 2z, 43

y
F| = (""c. 0) (0' b) F| = (C. 0)
b
< ¢ - ..
V' = (—a, 0)\_‘,__/V = (a, 0)
0, —b)

Fig. 15. (Foundations of Modern Math, 127)
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Fig. 16. A non-euclidian ellipse.
(Foundations of Modern Math, 138)
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Fig. 17. A parabola.
Penguin Dictionary, 171) .
Fig. 18. A hyperbolic paraboloid.

(Penguin Dictionary, 111)

There are lots of different methods for graphing conic sections. You can
construct them, use equations (like those above), use geometric definitions,
use architectural and geometric tools.... the list is almost endless. Here are a
few methods that most people aren't familiar with: Ellipses can be formed
using their directrices, a rectangle's midpoints, or a squashed circle.44 Paper
folding in a circle can create ellipse or hyperbolas.49 Another method of
graphing ellipses was found by Leonardo da Vinci. 46 An instrument called

the trammel can also be used to form ellipses.47



PAPER FOLDING

Here‘s how to fold a
hyperbola.

*Begin with a circle
drawn on a sheet of

paper.

*Select a point in the
circle's exterior and
mark its

- location with a dot.

*Fold a point of the
circle's boundary to

Fig. 19. An ellipse is a squashed circle.
the dot as shown and (Penguin Dictionary, 65)

crease the paper.

*Continue this process
of folding and creasing
around the entire

boundary of the circle.

| Fig. 20. and Fig. 21. A hyperbola
and an ellipse (More Joy of
Mathematics, 22-23)

* Start with a paper circle.
* Select a point in the interior of the circle that is not the
| center. Mark its location with a dot.
t * Fold and crease the circle so a point of its boundary
| lands on the dot.
* Continue the above process working your way around
the circle's boundary.

Eventually the shape of the ellipse wiil form,




To draw an ellipse in a rectangie. divide one half of each of rhe sides
and one half of the line joining the mid-point of a pair of opposite sides
into an even number of parts, and find the intersections of the lines Joining
X and Y to the marked points.

- A special case of this construction occurs when a ladder slips against a
] wall. Any point on the Jadder. such as the foot of a person still standing
on it, will move in a portion of an ellipse. This is the basis of a commercial
] instrument for drawing an ellipse using trammels. Two points of a rod
— siide in two grooves, and the path of a point on the rod is an ellipse,
Y

Fig. 24. Drawing an ellipse with a
trammel. (Penguin Dictionary, 66)

Fig. 22. An ellipse in a rectanagle.
(Penguin Dictionary, 64)

Fig. 25. The geometric definition of an
The following method of drawing an ellipse was discovered by Leonardo :H;E;eﬂls ?;:rln:uin %?c{tiion 864) and
da Vinci. Cut out a triangle ABC. Draw two axes, which need not be ' o
perpendicular, on a piece of paper, and move the triangle so that one vertex

moves along one line and another moves along the second line. The parh
of the third vertex will be an ellipse.

end of the rod and to the other focus, B, and keep it taut by a pencil, shown
here at P, held against the rod, As the rod rotates, P traces out one branch
of a hyperbola.

X

The hyperbola can be drawn mechanically by a method similar to, but
less simple than, that for the cilipse. Let AX be a rod rotating about A,
which will be one focus of the hyperbola. Attach a length of string to the

Fig. 23. Leonardo daVinci's method.
(Penguin Dictionary, 65 and More Joy
of Mathematics, 265)

Fig. 26. A mechanically drawn hyperbola,
(Penguin Dictionary, 107)



Another (more complicated) instrument can be used to graph a
hyperbola. A rod with a string attached rotates about one of the foci. When
the rod rotates, the arc that it creates is a hyperbola.48 (See Figure 26)

Hyperbolic graphs can be used to look at conics. Define the distance to
be equal to |x2 - x1| + |y2-y1|. The graph of a circle looks like a square, that

e i

of an ellipse looks like a hexagon (Figure 16), and the graph of a parabola

looks like a pentagon that is missing a side.49

Vocabulary words of the day:

Lattice Rectum. The lattice rectum of a conic is the chord that passes
through the focus and is perpendicular to the major axis of a conic . It has a
length of 2p.50

Cassinian Oval. If a point moves so that the product of its distances
from the foci is constant, its path is a Cassinian oval, cross-sections of
elliptical torus.51

Confocal Conics. Given any pair of points, there are an infinite number
of ellipses and hyperbolas with these points as foci. No ellipse meets another,
nor does a hyperbola, but every ellipse meets every hyperbola at right angles.
Given a point and a line, there are an infinite number of parabolas.52

Orthogonal Surfaces. Two or three families of 2- or 3-dimensional
curves that intersect every member of the other family(ies) pependicularty.

The hyper-monster shown in Figure 13 is analogous to the family of confocal



conics with one family being an ellipsoid family, the second being
hyperboloids of one sheet, and the third being hyperboloids of two sheets.53
Pencil of conics. There is a unique conic through five point, or touching
five lines, and an infinite family of conics touching four lines.54
Steiner's Roman Surfaces. y*2z°2 + z/2x"2 + x*2y*2 + xyz = 0, pinch-
points, four planes, heptahedron form.55 Ancther way to look at surfac:,%:%

deals with Boy surfaces. Romboy (a portmanteau of Roman and "Boy)

homotopy is based on the idea of rotating ellipses through space.56

29 €4

Fig. 27. A Romboy homotopy. (Islands of Truth, 41)

And here's a short story to end this paper:

Once upon a time, there were 17 yellow pigs who lived on the
surface of a hyperdonut. And near them in the terrible land of
eigenvectors and quaternions lived a big, bad pink elephant and his 22
children. One day the big, bad elephant said he would sneeze, and
sneeze, and blow their house down, but he couldn't so he tried to come
down their Klein bottle chimney, but that's another story. This story
involves just one of the pigs, Sgip Wolley, and one of the elephants,
Tnahpele Knip, who were sort of friends (or as close to friends as a pig
and an elephant could be). One day they were walking down the
hyperbolic paraboloid hills, where Dandelins (not to be confused with
Dandelions) grew wild that separated their villages. Tnahpele was
telling a story about a trunk (tusk, tusk) and Sgip was squealing with
delight and snorting with laughter. Just then, however, Tnahpele's
father came along and told them that they could not be with each other
because yellow pigs and pink elephants did not get along. So after that
Sgip and Tnahpele never saw each other again. But every 17*23 days,
if you look at a Dandelin sphere, you'll see a pink trunk and a little
yellow curly tail sticking out, and you'll know that the friendship of the

two young animals never really ended. 1723



That's all for the interesting and semi-interesting facts (well, there are
a lot more, but I couldn't get the books that had them in time). Here's an
interesting thought about conicoids and hyper-Dandelin spheres .... or not.
Now I have thoroughly exhausted the topic of Dandelin spheres (and anything
else related to them in any way, shape, or form). -
Well, that gets as close to concluding this topic as I think that I will
get. Hope you have enjoyed these excursions in conic sections. Now suppose

you graph all of the conics on a torus to form envelopes, or better yet on a

Mobius strip or Klein bottle.......



Just when I thought that I was really done!
A page of Afternotes

Today I received Daniel Scher's book, Exploring Conic Sections with The
Geometer's Sketchpad (Berkeley: Key Curriculum Press, 1995). The following
information comes from his book.

Ellipses:
The two-pins-and-a-string construction, the folded-circle construction, and the

tramimel are already addressed in my paper, but here's a little more on the trammel. Here'~ -

how to make a simple trammel with a ruler, tape, a pencil, and a protractor -- use the tape
to mark three spots on the ruler. (I suggest spots at 17 em, 23+28/17 centimeters, and
17+34/23 centimeters, but those are my entirely random numbers.) Get a sheet of .paper
and use the protractor to draw two perpendicular lines (the axes of your plane). Position
your ruler so that your middle point is on the origin and the ruler lines up with the x-axis.
Slide the ruler so that your midpoint is on the y-axis and one of the other points is still on
the x-axis. Continue doing this marking all points that the third point on your ruler is
passing. These points should trace out one quadrant of an ellipse.

Another way to construct an ellipse is courtesy of Frans von Schooten. Here's how
with a straw, a pencil, tape, and a sheet of paper -- bend the straw in half and mark a point
on one side with the tape. Draw a horizontal line on the paper and lay the straw so that it
lies flat along the line and mark the position of your point on the paper. Hold the side
without the mark in place while pushing the other side a little inward along the line toward
the other side of the straw. Continue this while tracing out the point to get a quarter of an
ellipse.

Parabolas:

I realize that while I showed paper folding methods for the ellipse and hyperbola, I
did not include those methods for a parabola or circle. To fold a parabola, mark a point
near the bottom-middle of a sheet of paper. Fold the paper and crease lines that contain
this point. Each of these lines is tangent to a parabola. Another way to make a circle or
any other conic section is to use a straightedge in a way similar to creases. To make a circle,
pick a point and place the ruler so that one edge is tangent to that point. Draw a line using
the other side of the ruler. Continue this process to get a circle with a radius the length of
the width of the ruler. To prove that paper folding about a point does generate a parabola,
you need to use geometric means by finding chords on a circle that are perpendicular to a
segment at a certain point,.

Hyperbolas:

While an ellipse has a constant sum of distances from two points and can be shown
as the intersection of circles with two different radii, a hyperbola can be similarly shown by
msking a small change in the intersecting-circles construction. A hyperbola can also be
folded where the center of the circle is one focus and the point outside of the circle that you
pick is the other focus.

Pascal's Theorem:

Pick any six points (a, b, ¢, d, e, and f) on a conic. Draw segments ab, be, cd, de, of,
and fa. Label the intersections of ab and de as point A, be and ef as point B, and cd and fa
as point C. The points A, B, and C are collinear. Using the converse of this theorem, a conic
can be constructed through any five points as long as no three are collinear.
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